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ABSTRACT 

The present paper gives an algorithm that finds simultaneously the 

shortest paths between many pairs of nodes in a given network.     In the book 

by Berge,  the values of  shortest paths between many pairs of nodes are 

found.    Here,  we use a  special matrix multiplication technique to find the 

actual arcs that are used to form the shortest paths.    In a network with 

n    nodes, log [n-l] special matrix multiplications are needed to find all 

the shorte'-t paths. 

The present paper also gives an algorithm for constructing a net- 

work with prescribed shortest distances and with the total distances as- 

sociated with arcs a minimum. 



The present paper gives an algorithm that finds simultaneously the 

shortest paths between many pairs of nodes in a given network, an algo- 

rithm for constructing a network with prescribed sho.-test path distances, 

and with the total distances associated with arcs a minimum. 

Many papers have been written about finding one shortest path from a 

given node to another node in a given network (see for example, [1J, [3], 

1^1>   [8], or the review [9] ).  If we are interested in shortest paths be- 

tween many pairs of nodes, then this problem can certainly be solved by 

using any of the existing algorlthnß for finding a shortest path and doing 

the algorithm over and over for every pair of nodes. Because in finding 

a shortest path many informations are obtained during the process, we would 

expect that some saving would be acheived if we want to find many shortest 

paths  Also, for finding maximum flow values between many pairs of nodes, 

it is known that a great amount of computation can be saved (see [5] ), and 

the known dual relationship between maximum flow aud shortest path in an 

a-b planar network would also lead one to expect that many shortest 

paths can be found simultaneously„  In the book by Berger [2], the values 

of shortest paths between many pairs of noeds are found by a special ma- 

trix multiplication technique; in Gomory and Hu [6],  a minimal cost net- 

work is found which can satisfy given flow requirements between many pairs 

of nodes simultaneously. 

We are now interested in finding the actual arcs that are used to 

form the shortest paths.  Although the paper is self-contained, we shall 

use many of the notions of [2j and [6]. 

We consider a network consisting of nodes N and arcs A  leading 
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from nodes    N    to    N.   ,    Associated with each arc,  there  is a distance  x\mc- 

tion d      defined on it      We  shall not assume either    d      « d      or that 

d     + d     ^ d ,    ,  but we shall aBsume throughout the paper that distance 

functions    d        are all non-negative 

We shall follow many authors   (see  for example,   [2]   ) in defining two 

binary operations 

(1) X1©X2 " min  '^l  '   ^2^ 

(2) Xl®X2 " kl * X2 

Using this  special addition and multiplication instead of usual ad- 

dition and multiplication,  we have a special matrix product of the two 

n x n matrices D    -  [d   .] and Dp [dJ/j   the matrix D    =  ^1'J with 

J) ^J « Bilnfdls + d^)      s  = l,..,,n . 

If we  square  D ^ f^1 J   J  
tlie Üstance matrix in the above  sense, 

the resulting ciatrix D1" •* f^-!'J vo^l^ give the values of  shortest paths 
-*■ j 

n-l using two or less arcs between any two nodes.     Gimilarly,  D would 

give the shortest path values between any two nodes using    n-l    or less 

arcs.     Since,   for a network of    n    nodes,   shortest paths are alwayt of 

n-l    arcs or less,  after    L    times operations xike  (3,,  D Is obtalneü 

with 2    > n-l    and L < [log_(n-l)  j  where   Llog0(n-l)  ]  indicates the 

least integer greater than or equal to  log  (n-l). 

In the paper by Gomory and Hu  .'6],   the problem is to find a mini- 

mum cost network that will  satisfy all given flow requirements  simul- 

taneously,     Assume the cost of building an arc of unit capacity between 

nodes    N.     and    N,    is    c   . , we want to find    y^ .    such that 
i J U iJ 
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CO )   *Trl  x^-o     ^p,q 

(5) ^-Y^ 

(6) 2  xij ^ yij for a11  i and J 

and 

Pj" hi ■ In- 

(7) min z = c y   where R  are given flow requirements be- 

tween nodes N  and N . This problem can certainly be solved by using 

c   as distance and then find the shortest paths between each pair of 

nodes N to N  and give every arc in the shortest path the amount of 
P   q 

y*^ = R^ .  The final y   is obtained by addition ) y^ 

Pjq 

stead of finding shortest paths one by one, we can find the cheapest net- 

work as follows:  (see [t;] ). We first form the n x n matrix D => [d .] 

where d  is the distance from nodes N. to N. . Then we form the 

ok 
powers of D by squaring in the sense of (3) until D   is obtained 

where 2 > log„(n-l). 

2      k      Ö 
In getting    D ,  D ,  D  ,  etc.,  we need only keep the  largest power 

of    D    and discard the previous powers of    D  .    At the   same  time,  we  form 

matrices B,   ,  B^  »...»B,     where     B    ■  [b. .] and bJ .     is the  index    s    in 1   '     2  '       '  k u 1J ij 

(3) for which the minimum was obtained. 
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ok 
After log (r,-l) operations or less, we have D   and B, , Bp ,...,B. . 

Now we define arother set of matrix B from B, . We start with 

BT,, -^ Ir  , BT » fb, ,",  is obtained by adding to an all-zero matrix 
L+l        L  L ijJ 

IT  to i,s and 6,J positions where ^ is obtained from the corresponding 

— — — u+1 
BT .  Successive B  are defined from B .,  and B  by adding b  '  to 
L u u+1     n      J ij 

em all-zero matrix in the i_,s, and s,J positions where the value of s is 

obtained from B . When B,  is obtained^ B, givep the y   which min 

(7) and that will satisfy the given constraints (1+),(5), and (6). BT .,  is 

idrntical with the requirement matrix . This is certainly sufficient to 
_UJ-1 

satisfy all requirements; if we let y  ^ b.i « ^or  all i an(i J • 

Since we want to find the cheapest feasible network, we try to find 

a series of arcs which form a path from N   ^o N  and of minimum total 

cost. BT  is obtained by adding Fr  to a zero matrix to the two pos- 

itions in BT  that in B  indicate the intermediate node in which the 

minimum cost is achieved, As the minimum cost path for each Fr  consists 

of 2h arcs or less, after tracing back from B. ,  L times to B, , B, 

gives the y   which form the cheapest cost feasible network. The above 

algorithm gives the network which contains all the shortest paths, but 

does not give any information abcit whether one arc is used in a given 

shortest path (or requirement FT ).  This is due to y  being the sum 

of many requirements. 

To convert the above algorithm into one that reveals the actual arcs 

Uüed in different Fr  , we need only artificially give Br^    as follows., 

Let R. ,R ,,.,,,R  be the given m requirements between m palrp of 

nodes  We shall let (8) V R < R ,  for k « l,...,m-l .  For example, 

i*l 
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K^  " 2k'1  will satisfy (8). 

— k-1 
When B, " 7.. , is obtained, we can uniquely decompose y  ■ 2)6 2 

wher? 6„ o l or zero. Suppose we want to find the shortest path from N fg *-*- P 

to N , first find FT ^ - FL , and then start from N . Following the 

k-1 
arcs with 2   in the decomposition of y   will lead N  to N  along 

the shortest path. 

Take a five-node network as an example. The distances between nodes 

are shown in Table 1.  (Note distances are not symmetric. ) The D  together 

vith B, matrix is shown in Table 2. The D, together with Bp matrix is shown 

in Table 3. 
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© © © ®i©l 
© 0 1 00 6 

■ 

oo     1 

© k 0 o 00 00       | 

© 00 00 0 2 00       j 

© 00 00 00 0 0 

© 2 5 00 00 0 

Table 1 Values of 
^] 

© © © © ®| 
i© o 1 5 6 6 

1© K 0 2 4 oo    ! 

© 00 00 0 2 2 

1© 2 5 00 0 0    j 

©h 5 7 8 0 
1 

© © © © ©| 
© X 2 2 1+ ir       j 

© 1 X j 3 2        1 

i© 1 2 X 4 4 

© 5 5 J X 
i 

© 1 i 2 1 x 1 
! 

-2   2 
fd ,J - D B 

Table 2 



©1 © ® © © 
© 0 1 5 5 5 

© 1+ 0 2 1+ 4   | 

© k 5 0 2 2    1 

1® 2 3 5 0 0 

© 2 5 5 7 0 

© © © © © 
© 0 2 % 

y 2 3 

© 1 0 3 1* 3    1 

© k 5 0 U 5   j 

© 1 1 1 0 5   ! 

© 1 2 2 2 0  1 

r^   I1»     ^ 

Table    5 
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Suppose that we want to find the shortest paths from N  to N 

Then we 

artificially set the corresponding flow requirements to be 1,2,4, 

8 , and 16 . This Is shown in Table k. 

Nl t0 \ ' N2 t0 N5 > 
N  to N  and N  to N 

© © © © © 
© 0 0 1 2 0 

© 0 0 0 0 k 

@ 
0 0 0 0 8 

© 16 0 0 0 0 

© 0 0 0 0 0 

Table k 

From B0 in Table 5 and B  in Table k,  we get Table 5 (by adding 

IT  to i , s and s , j  ) . 

© © © © © 
© 0 2 1 0 0 

© 0 0 1+ 2 o   | 

© 0 0 0 0 12 

© 16 0 0 0 0 

© 0 0 0 0 0    | 

B 

Table 5 
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From H.  in Table 2 and B^ in Table 5, we set B  in Table 6 
1 c 1 

© ® © © ©1 
1® 0 5 o 0 0 

© 0 o 7 0 0 

© 0 0 0 Ik 0 

© 0 0 0 0 20   | 

!© 
1 

16 0 0 0 0    ' 

B 

Table 6 

Note that every number in Table 6 has a unique decomposition as 
k k 
Z &    2    .    For example,   if we want to find the shortest path from 

k=0 fg 

N      to    N    ,  then we look through    B     and find out what numbers contain 

1+    as  their partial sum.     In the present example,  we have    7 =» ^ + 2  +• 1, 

Ik * Ö + k + 2    and    l6 + 8 + 4 .    Therefore,   the shortest path is 

from    N      to    N    ,     N      to    N        and    N      to    N    .      If numbers are 

represented in the binary system,  the process of checking whether 

k 
a number contains    2      is a very easy Job. 

We have given a method of calculating the  shortest paths  betweer 

all pairs of nodes in a network in which distances  on arcs are given. 

Now we  consider the problems of realization and synthesis.      (The problemr 

of realization and synthesis  of undirected networks  were studied by 

Hakimi and   Yau. 
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Problem of reedi^aliuti:     Given an    nxn    tin i tlx     [£,   ]   ,     V/hai 
i J 

are the  conditions on [i     ]     such that there exists an n-node 

network whose shorlect distanccü art- the given [£   .]   '•    It is easily 

seen that the necessary and sufficient conditions on i  .     Is that 

^  C ^  + ^ i,  for a11  i > 0 > k •  The necessity Is clear.  If ik   ij   JK 

i^ > i. , + i., . then the shortest path from N,  to N. of 
ik x 1J   jk ' y i     j 

distance | . plus the shortest, path from N.  to N  of distance 
1J J K 

£ ,      Is a path from    N,     Lo    N,     and of less distance than    i 
jk ^ i k Ik 

This would contradict  thai     £ ,     is  '.he shoi'test  distance  from    N 
Ik i 

to   rV. 

The sufficient part,  is  also clear.     If    £_,,   < i  , + i.,      for 
ik -^    U jk 

all    i   ,  J ,  k  ,  we can then construct    n(n-l)     arcs between an 

n-node  network with    d   •  =  £        for all     i   ,   j   .     Then the  shortest 
1J l J 

path from any node    N      to  any other node    N.     is  just the single 

arc    AJ .    with distance    d   .   .       Since there arc many n-node networks 
ij ij 

that will have shortest distances equal to  the prescribed     [i    ]     , 

the following synthesis problem arises naturally.     Given an    nxn 

matrix     [i    ],find a n-node  network with given   [£   .] as shortest 
i J •*■ J 

distances, such that the total amount of    dJ .    associated with arcs 
' ij 

of the network is minimum     (i.e.  min 2d)  .     From now on,  we assume 

dij > 0 • 

We shall use the words "optimum network" to mean the network with 

total d . minimum and satisfying the prescribed U. J as shortest 

distances.  If an arc A   is in an optimum network, then the shortest 
IK 

path  from    N      to    N      consists of the single arc    A ,     with 
■^ 1 k Ik 

ri       = L     .     For,   if    £        were  }qual  to    d      + d      +...+ d      < d       , 
ik ik ik 11        12 mk        ik  ' 

then any shortest path usin^    A.,     can use the arcs    A        A    ,...,  A 
1^- J L 1c: 1 mk 

*    This is the same condition given by Haklmi and Yau. 
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Lnsttad    s-j that th<? arc    A        '--an b* rrpla ed  f , reduce the  t   t.al 
IK 

Z  d        cf the network.     T*l3 wculd contradict  th» network  i-  an 
'-} 

optimum network. 

Therefore, If an arc  A   Is in an optimum network, then 
' ik 

£       :-> d      y     If an ar"     A        if. net   In an octiTrum network,   then 
ik        Ik ik ^ 

*' ik        11        12 mk 

where    A ,.  A^^-.^.A ,      are arcs of the optimum network.     It   foil owe 
ii      12 '  mk 

from   '9) that 

do' ^>™*'til.*12 -W 

From   '9),   the  an?   with    d   .    ejual  tc  the  f.mailest    i        must  be  in an 

opt irauti n» tw: rk,. 

If v know two ar>'3    A, .,  A        a^e  in any optimum network,   then 
ij      jk 

P ,   < I      ~ £      -> d      + d      .     If    i      •-> d      -t- d      ,  then the arc 
■'-* ^   U        Jk 1 j jk ik        ij jk  ■ 

A ,      will not be in any optimum network.     If     £     < d      1- d       , 
ik IK       Ij        jk 

then    A       mav ^r may net  be m an optimum network.    This  depends 

on If there axe  :th-.r axes such that    i ,   --■ d       t- d ,   .     However,   if :k        ip       pk 

d      ^ d        and    d ,   < d        for any nodes    m  ,   n  ,   then    d      -id      < 
ij ^   im jk ^    ak 1 j        JA ^ 

d       + d        for any ncde    m .    Consecuentlv,   if     £     <d      +d      <d     *-d, 
im       KK ' v * ik x    ij JK ^      n     mk 

then the ».r;-    A        1.   in an optimum network. 
xK 

Frj5. the above enslderations, we ;an develop the following 

algorithm for constructing an optimum network. Given the prescribed 

distance matrix  [i ,j , we shall circle some entries I        and pi* 
1J id 

bracket*   en other entries. 
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St-p 1;     Circle thr smallest  i   which has not yet, been circled, 

bracketed, or crossed cut.  (intiaily, none of i  . has been 

circled, bracketed, or cro&ced out. ) When an ^ .  has been > ' ' ij 

circled, cross out the ith column and the jth row.  Continue 

until every entry is circled, or crossed out. 

Sttj: 2:     Form the matrix D with d ,  equal to circled ir 

bracketed i      ,     d . - oo otherwise, 
ij    iJ 

2     " 
Slep 5:     Squar- D in the cense of (3).  Let D = [d  ] . 

Cumpfiire  [d "] wltb [i ] .  If  X   is not circled and eaual 
iJ iJ        iJ 

to d " , put a bracket on the i 
ij ij 

Step k. If every  i   is either circled or bracketed, go to 
ij 

Step 5.  otherwise, erase all crossed out columns and rows 

and return tc Step 1. 

Step l). Tae iratrix with d. . - circled i . is the optimum 
iJ iJ 

network. 

Kote in Step 1,      fi   ,1      is being circled with  increasing magnitude. 
iJ" 

Because of the cross-out process,   the       [£   .]      circled in the 

same seep is  not  connected.     From  (9)  and   (lü)  they must be  in 

the Optimum network.      In step  3>  we -heck whether or not some of 

those circled arcs  form a path and  if  they would imply  the orusslon 

of some other ar^s.     Since we only square  the distance matrix formed 

in Step 2,  we only check paths coasisting of two arc?.     When an 

entrv     fi     I     ^ equal to    d      + d       ,   this    Ü        is  bracketed J     "Ik IJ        Jk   ' ik 

and vill  be used to form the matrix    D    in Step 2 of the next cycl^, 

As at the end of  Step k we erase all   crossed out columns and rows, 

every entry    £        will sooner rr later   by circled or bracneted which 
1K 
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implies that arc Is  in or is not in the optimum network.     The 

uniqueness of the optimum network follows from the observation that 

there is no alternate choice of circling an arc. 
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